

TECHNICAL DATA SHEET

PC 404FL AP

CONTENTS

A. MATERIAL DESCRIPTION

B. MATERIAL PROPERTIES

- 1. Liquid
- 2. Cured
- 3. Viscosity Profile
- 4. DMTA Analysis Data
- 5. TMA Analysis Data

D. APPENDIX

- 1. Test Equipment
- 2. Test Method

A. MATERIAL DESCRIPTION

PC-404FL AP coating is a radiation-curable acrylate useful for polymer cladding making processes. PC-404FL AP coating has suitable glass transition temperature, rapid cure property, non-yellowing, thermal resistance, high oxidative and hydrolytic (moisture) stability, which are required by optical fiber industry applications.

1. CURING CONDITION

Minimum UV dose of PC-404F for complete cure is 1000 mJ/cm² under a nitrogen environment. However, the minimum dosage is heavily dependent upon the thickness of the PC layer.

2. STORAGE

PC-404FL AP polymer cladding coating can polymerize under improper storage conditions. Store materials away from direct sunlight and presence of oxidizing agents and free radicals. Storage temperature range is between 15° C to 27° C.

3. PRECAUTION

PC-404FL AP polymer cladding coating materials can cause skin and eye irritation after contact. Therefore, avoid direct contact with these materials. If contact occurs, immediately rinse affected areas copiously with water.

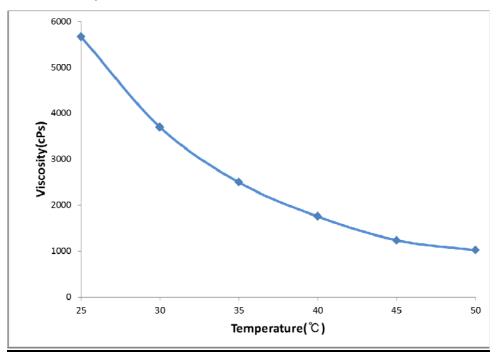
4. <u>NOTES</u>

The information contained herein is believed to be reliable but is not to be taken as representation, warranty or guarantee and customers are urged to make their own tests.

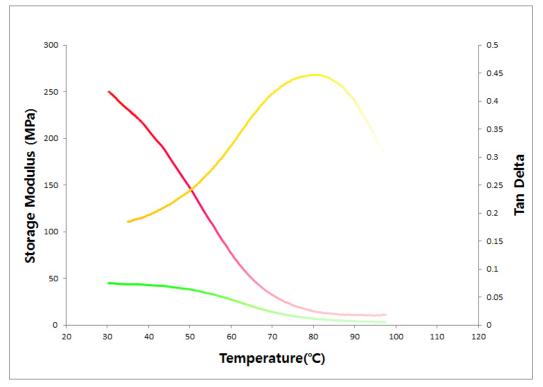
B. MATERIAL PROPERTIES

1. LIQUID

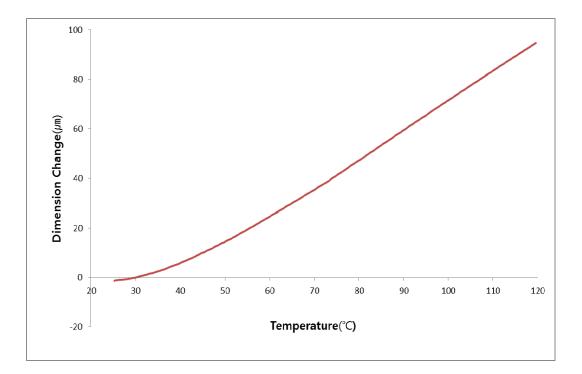
Viscosity	at 25 °C	$4900 \text{ cPs} \pm 300$
Density	at 24 °C	$1.50 \sim 1.55 \text{ g} \cdot \text{cm}^{-3}$
Refractive Index at 25°C, 589 nm		1.396 ± 0.005


2. <u>CURED</u>

Refractive Index at 852 nm	1.404 ± 0.005
Secant Modulus At 2.5% Strain	180 ~ 220 Mpa
Tensile Strength at Break	11.0 ~15.0 MPa
Elongation at Break	15~30 %
Glass Transition Temperature At Tan_delta Max	82.5 °C
Coefficient of Expansion At 30 $^{\circ}$ C ~ 60 $^{\circ}$ C	18.90 X10^5 cm/(cm℃)
Shrinkage on Cure	< 11.5 %


The information contained herein is believed to be reliable but is not to be taken as a representation, warranty or Guarantee. Customers are urged to perform their own process and QC tests.

3. <u>Viscosity Reference</u>


4. DMTA Analysis Data

Rev. III Revised Date : 02th April 2014 The Term of Validity : 02th April 2014 ~ 01th Aug 2015

5. <u>TMA Analysis Data</u>

C. APPENDIX

1. TEST EQUIPMENT

	Test Equipment	
Viscosity (cPs)	Brookfield DV II+ or DV III+	
Refractive Index (uncured)	Abbe refractometer	
Density (g/cm ³)	Pycometer	
Refractive Index (cured)	Prism Coupler / Abbe refractometer	
Shrinkage On Cure	Pycometer	
Secant Modulus (kgf/mm ²)	Instron 4443 UTM	
Elongation (%)	Instron 4443 UTM	
Tensile Strength (kgf/mm ²)	Instron 4443 UTM	

2. <u>TEST METHOD</u>

Viscosity (cPs)	ASTM D-1084 Method B	V = fs V=Viscosity of sample in centipoises f=Scale factor furnished with instrument s = Scale reading of viscometer
Refractive Index	ASTM D 542 – 50	
Density (g/cm ³)	ASTM 1475	D = (W – w)/V V =Volume of container(mL) W = Weight of the filled container w = Weight of the empty container D = Density (g/mL)
Shrinkage On Cure	ASTM D-792	X = (a x d) / (b + a - m) % Shrinkage =(X-d)/d a = Sample Weight d = Specific Gravity of Uncured Sample b = Weight of Pycnometer and water m = Weight of Water and Sample in Pycnometer e = Weight of Pycnometer
Secant Modulus (kgf/mm ²)	ASTM D-638	
Elongation (%)	ASTM D-638	$(\mathbf{L} - \mathbf{L}_0) / \mathbf{L}_0 \mathbf{X}$ 100 \mathbf{L}_0 = Length of initial L=Length at break point
Tensile Strength (kgf/mm ²)	ASTM D-638	P/ (TXW) T = Film Thickness, P= Tensile pull to rupture W= Width of Film

